Evaluate sin135° and sin(-135°) without using calculator.

Related Solutions:



Answer: The value of sin135° is $\dfrac{1}{\sqrt 2}$ and the value of sin(-135°) is -$\dfrac{1}{\sqrt 2}$

Evaluate sin135° and sin(-135°) without using calculator.
sin135° or sin(-135°) is a compound angle of Trigonometry. To evaluate the values of such angles, you need to understand the fundamentals of Values of Trigonometric Ratios. Today, we will teach you many possible ways to find the values of these angles. 





Evaluating sin135° using the relation of 
sin(90° +A) = cos A.

sin(90°+A) = cosA is an identity to find the values of sin when A is an angle less than 90°.

In our question, we have 135°. Let us divide this angle into (90°+A).
We have,
135° = 90°+A
or, A = 135°-90°
So, A = 45°

Now, that we have the value of A= 45°, we can now find the value of sin135°.

We know
sin135° = cos(90°+45°)
or, sin135° = cos45°
So, sin135° = $\dfrac{1}{\sqrt 2}$



Evaluating sin135° using the relation of sin(180°-A) = sin A.

sin(180°-A) = sinA is an identity to find the values of sin when A is an angle less than 90°.

In our question, we have 135°. Let us divide this info (180°-A).
We have,
135° = 180°-A
or, A = 180°-135°
So, A = 45°

Now, that we have the value of A = 45°, we can now find the value of sin135°.

We know,
sin135° = sin(180°-45°)
or, sin135° = sin45°
So, sin135° = $\dfrac{1}{\sqrt 2}$



Evaluating sin135° using the formula of sin(A+B).

We know,
sin(A+B) = sinA.cosB + cosA.sinB

In this formula, we need to divide the given compound angles into such angles whose values are known from the value table of trigonometric ratios. Like: 0°, 30°, 45°, 60° or 90°.

We can divide 135° into 90° and 45°. 

Let A = 90° and B = 45°

sin135° = sin(90°+45°)
or, sin135° = sin90°.cos45° + cos90°.sin45°
or, sin135° = 1. $\dfrac{1}{\sqrt 2}$ + 0.  $\dfrac{1}{\sqrt 2}$ 
So, sin135° = $\dfrac{1}{\sqrt 2}$ 



Evaluating sin135° using the formula of sin(A-B).

We know,
sin(A-B) = sinA.cosB - cosA.sinB

According to this formula, we can divide 135° into (180°-45°).

Let A = 180° and B = 45°

sin135° = sin(180°-45°)
or, sin135° = sin180°.cos45° - cos180°.sin45°
or, sin135° = sin(90°+90°). $\dfrac{1}{\sqrt 2}$ -cos(90°+90°).$ \dfrac{1}{\sqrt 2}$ 
or, sin135° = cos90°.$ \dfrac{1}{\sqrt 2}$  - (-sin90°).$ \dfrac{1}{\sqrt 2}$ 
or, sin135° = 0.$ \dfrac{1}{\sqrt 2}$ - (-1).$ \dfrac{1}{\sqrt 2}$ 
So, sin135° = $ \dfrac{1}{\sqrt 2}$ 



Evaluating sin(-135°) using sin(-90°-A) = -cosA.

We know, A = 45°.

sin135° = sin(-90°-45°)
or, sin135° = -cos45°
So, sin135° = -$ \dfrac{1}{\sqrt 2}$ 




Evaluating sin(-135°) using sin(A-B). 
Let A = 45° and B = 180°

sin(45°-180°) = sin45°.cos180° -cos45°.sin180°
or, sin(-135°) = $ \dfrac{1}{\sqrt 2}$.(-1) - $ \dfrac{1}{\sqrt 2}$.0
So, sin(-135°) = - $ \dfrac{1}{\sqrt 2}$ 


Evaluating sin(-135°) using sin(A+B).
Let A = -90° and B = -45°

sin{-90° +(-45°)} = sin(-90°).cos(-45°) +cos(-90°).sin(-45°)
or, sin(-135°) = (-1)$ \dfrac{1}{\sqrt 2}$ + 0.(-$ \dfrac{1}{\sqrt 2}$ 
So, sin(-135°) = -$ \dfrac{1}{\sqrt 2}$ 

So, these were some of the many ways to find the values of sin135° and sin(-135°).


You can get more help by visiting these useful links:

Link: Compound Angles
Link: Values of Trigonometric Ratios
Link: Introduction To Trigonometry

#SciPiTutor
#FAQs